Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions.

نویسندگان

  • J S Bergström
  • S M Kurtz
  • C M Rimnac
  • A A Edidin
چکیده

When subjected to a monotonically increasing deformation state, the mechanical behavior of UHMWPE is characterized by a linear elastic response followed by distributed yielding and strain hardening at large deformations. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy. A number of different constitutive theories can be used to model these experimentally observed events. We compare the ability of the J2-plasticity theory, the "Arruda-Boyce" model, the "Hasan-Boyce" model, and the "Bergström-Boyce" model to reproduce the observed mechanical behavior of ultra-high molecular weight polyethylene (UHMWPE). In addition a new hybrid model is proposed, which incorporates many features of the previous theories. This hybrid model is shown to most effectively predict the experimentally observed mechanical behavior of UHMWPE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in total joint replacements. Wear, fatigue, and fracture have limited the longevity of UHMWPE components. For this reason, significant effort has been directed towards understanding the failure and wear mechanisms of UHMWPE, both at a micro-scale and a macro-scale, within the context of joint replacements. We have previously ...

متن کامل

Ratcheting crystal plasticity modeling in microstructure of magnesium alloy under stress-controlled cyclic tensile loading with non-zero mean stress

Todays, the requirement of lowering the vehicle weight for the reduction of the fuel consumption and emissions, one of the methods considered by designers is to use the ligh magnesium alloy under cylclic loadings. In this article, considering the microstructure of the AZ91D magnesium alloy, its crystalline structure, a model for predicting the ratcheting behavior of this alloy was adapted and v...

متن کامل

Effect of cyclic strain on the mechanical behavior of virgin ultra-high molecular weight polyethylene.

Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymeric material employed in critical biomedical applications. Knowledge of its mechanical behavior is essential in order to obtain accurate prediction of stresses and deformations in real components, in particular when cyclic loading is considered. In the present research the effects of alternating and pulsating cyclic strain on the mech...

متن کامل

The influence of suture material on the strength of horizontal mattress suture configuration for meniscus repair.

PURPOSE Comparison of the mechanical characteristics of meniscal repair fixation using horizontal sutures and six different sutures under submaximal cyclic and load to failure test conditions may aid physicians in selecting a suture type. METHODS A 2-cm long anteroposterior vertical longitudinal incision was created in six groups of bovine medial menisci. Lesions were repaired using a No. 2 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2002